Network Working Group A. Surtees

Request for Comments: 4465 M. West
Category: Informational Siemens/Roke Manor Research
June 2006

Signaling Compression (SigComp) Torture Tests
Status of This Memo

This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract

This document provides a set of "torture tests"™ for implementers of
the Signaling Compression (SigComp) protocol. The torture tests
check each of the SigComp Universal Decompressor Virtual Machine
instructions in turn, focusing in particular on the boundary and
error cases that are not generally encountered when running
well-behaved compression algorithms. Tests are also provided for
other SigComp entities such as the dispatcher and the state handler.

Surtees & West Informational [Page 1]

RFC 4465 SigComp Torture Tests June 2006

Table of Contents

1. INtroduCtioN .. e e e e e e e e e 3
2. Torture Tests Tor UDVM .. e a e e e adaaa e 4
2.1, Bit Manipulation e aaaaeaaan 4
22 N gl 1111 o o 5
22 S T Y of o o 7

2. 4. SHA-L e e e e e e e m e a e aaaaaaaaaan 8
2.5. LOAD and MULTHILOAD . .. e e e e eccmc e aaeaaaaaaaann 9
2.6, COPY ot e et e e e e e e e e e e e e e e 11
2.7. COPY-LITERAL and COPY-OFFSET ..o i e e cieaaaeaaann 12

2. 8. MEMSET L it et e e e e e e e e e e 14
2.9, CRC L e e e e e e e e 15
2.10. INPUT-BITS .. i e e e e e e aacaacaacaacaaaaaaaaan 16
2.1, INPUT-HUFFMAN i e e ceecacecaaeaaaaaaann 17
2.2, INPUT-BYTES ittt e e d e e e a e a e aaaaaann 19
2.13. Stack Manipulation e aaa e 20
2.14. Program FIOW it e e e aacaeaaaaaaaanann 22
2.15. State Creatlion oot it e e e e e 23
2.16. STATE-ACCESS .. it it e e e ceecacecaceaaaeaaaaaaaan 26

3. Torture Tests for Dispatcher i ea e aaaaann 28
3.1, Useful Values e d e e a e e 28
3.2. Cycles CheCKiNg . ..o e e e e d e e e aaaaaaaa 31
3.3. Message-based Transporto eoaeoccaaaaaaaaaan 32
3.4. Stream-based Transport i a e aaaaaan 34
3.5. Input Past the End of a Message immaaaaaaaan-- 36

4_ Torture Tests for State Handler i oaiaaaa-. 38
4._.1_ SigComp Feedback Mechanism oo aiaaaaann 38
4_2_. State Memory Management i 41
4.3. Multiple Compartmentso o e a e ceeacaaaaaann 44
4.4. Accessing RFC 3485 Statecciciiim o e e e e e eaaaaaaaann 49
4.5. Bytecode State Creatlion oo e o e e c e e aaaaaaaann 50

5. Security Considerations e aeaaan 53
6. Acknowledgements e e eaiaaaaan 53
7. Normative References e e e e 53
Appendix A. UDVM Bytecode for the Torture Tests 54
ALl INSErUCEIONS | . it e e e e e e 54
A.1.1. Bit Manipulation i e e e aaaaaann 54

ALl. 2. Arithmetic e 55

2 N G S T T g o o 55

AL 4. SHA-L e e e e aaaaaaa 56

A_1.5. LOAD and MULTILOAD . .. e e d e e aaaa e e 56

AL 6. COPY o i e e e e e e e 56

A.1.7. COPY-LITERAL and COPY-OFFSET - iiiiaeaaann 57

N 1] 57

< 1 57

A1 10, INPUT-BITS L.t e e e e e d e e aaaaaaaa 57

A_1.11. INPUT-HUFFMAN it et d e e aaaa e e 58

Surtees & West Informational [Page 2]

RFC 4465 SigComp Torture Tests
A.1.12. INPUT-BYTES .. iii i e i e e e aamaeeas
A.1.13. Stack Manipulation
A.1.14. Program FIlow
A_1.15. State Creationo oaiaaaaaan
A.1.16. STATE-ACCESS .. it i e iieaa e e aaan
A.2. Dispatcher TestSo e e e e e e aaaaaaan
A.2_.1. Useful Values i aaann
A.2.2. Cycles Checking oo ieaeaaaan
A.2_.3. Message-based Transport
A_.2_4. Stream-based Transport_._ _..._....
A.2.5. Input Past the End of a Message
A.3. State Handler Testso iamaaaaaaaaann-
A.3.1. SigComp Feedback Mechanism
A_.3.2. State Memory Management-.-..-.
A_.3.3. Multiple Compartments
A_3.4. Accessing RFC 3485 State ..._...._...
A_3.5. Bytecode State Creation_...._..._
1. Introduction

June 2006

This document provides a set of "torture tests" for implementers of
the SigComp protocol, RFC 3320 [2]- The idea behind SigComp is to
standardize a Universal Decompressor Virtual Machine (UDVM) that can
be programmed to understand the output of many well-known compressors
including DEFLATE and LZW. The bytecode for the chosen decompressor

is uploaded to the UDVM as part of the SigComp message flow.

The SigComp User’s Guide [1] gives examples of a number of different
algorithms that can be used by the SigComp protocol. However, the
bytecode for the corresponding decompressors is relatively well
behaved and does not test the boundary and error cases that may

potentially be exploited by malicious SigComp messages.

This document is divided into a number of sections, each containing a
piece of code designed to test a particular function of one of the

SigComp entities (UDVM, dispatcher, and state handler).

The specific

boundary and error cases tested by the bytecode are also listed, as
are the output the code should produce and the number of UDVM cycles

that should be used.

Each test runs in the SigComp minimum decompression memory size (that
is, 2K), within the minimum number of cycles per bit (that is, 16)
and in tests where state is stored 2K state memory size is needed.

Surtees & West Informational

[Page 3]

RFC 4465 SigComp Torture Tests June 2006

2. Torture Tests for UDVM

The following sections each provide code to test one or more UDVM
instructions. In the interests of readability, the code iIs given
using the SigComp assembly language: a description of how to convert
this assembly code into UDVM bytecode can be found in the SigComp
User’s Guide [1]-

The raw UDVM bytecode for each torture test is given in Appendix A.

Each section also lists the number of UDVM cycles required to execute
the code. Note that this figure only takes into account the cost of
executing each UDVM instruction (in particular, it ignores the fact
that the UDVM can gain extra cycles as a result of inputting more
data).

2.1. Bit Manipulation

This section gives assembly code to test the AND, OR, NOT, LSHIFT,
and RSHIFT instructions. When the instructions have a multitype
operand, the code tests the case where the multitype contains a fixed
integer value, and the case where it contains a memory address at
which the 2-byte operand value can be found. In addition, the code
is designed to test that the following boundary cases have been
correctly implemented:

1. The instructions overwrite themselves with the result of the bit
manipulation operation, In which case execution continues
normally.

2. The LSHIFT or RSHIFT instructions shift bits beyond the 2-byte
boundary, in which case the bits must be discarded.

3. The UDVM registers byte copy left and byte_copy_right are used to
store the results of the bit manipulation operations. Since no
byte copying is taking place, these registers should behave in
exactly the same manner as ordinary UDVM memory addresses.

Surtees & West Informational [Page 4]

RFC 4465 SigComp Torture Tests June 2006

at (64)

ta pad (2)
b pad (2)

at (128)

JUMP (start) ; Jump to address 255
at (255)

istart

; The multitypes are values
; $start = 448 (first 2 bytes of AND instr)

AND ($start, 21845) . 448 & 21845 = 320 = 0x0140
OR ($a, 42) - 0 | 42 = 42 = 0x002a

LSHIFT ($a, 3) - 42 << 3 = 336 = 0x0150

NOT ($b) © ~0 = 65535 = OXFFFf
RSHIFT ($b. 65535) - 65535 >> 65535 = 0 = 0x0000

OUTPUT (64, 4) ; Output 0x0150 0000

; The multitypes are references

AND ($a, $start) ; 336 & 320 = 320 = 0x0140

OR (%a, %$a) ; 320 | 320 = 320 = 0x0140
NOT ($a) ; 7320 = 65215 = Oxfebf
LSHIFT ($b, $a) ; 0 << 65215 = 0 = 0x0000
RSHIFT ($a, $b) ; 65215 >> 0 = 65215 = Oxfebf
OUTPUT (64, 4) ; Output OxFfebf 0000

END-MESSAGE (O, 0, O, 0, 0, 0, 0)

The output of the code is 0x0150 0000 febf 0000. Executing the code
costs a total of 22 UDVM cycles.

2.2. Arithmetic
This section gives assembly code to test the ADD, SUBTRACT, MULTIPLY,
DIVIDE, and REMAINDER instructions. The code is designed to test
that the following boundary cases have been correctly implemented:
1. The instructions overwrite themselves with the result of the

arithmetic operation, resulting In continuation as if the bytes
were not bytecode.

Surtees & West Informational [Page 5]

RFC 4465 SigComp Torture Tests June 2006
2. The result does not lie between 0 and 2716 - 1 inclusive, in
which case it must be taken modulo 27M16.

3. The divisor in the DIVIDE or REMAINDER instructions is O (in
which case decompression failure must occur).

at (64)

ta pad (2)
b pad (2)
ztype pad (1)
:type_Isb pad (1)
at (128)

INPUT-BYTES (1, type_Isb, decomp_failure)
SUBTRACT ($type, 1)

JUMP (start)

:decomp_failure

DECOMPRESSION-FAILURE

; Now the value in $type should be OxFfff, 0x0000, or 0x0001
; according to whether the input was 0x00, 0x01, or Ox02.

at (255)
istart

; The multitypes are values
; For all three messages
; $start = 1728 (Ffirst 2 bytes of ADD instr)

ADD ($start, 63809) ; 1728 + 63809 = 1 = 0x0001

SUBTRACT ($a, 1) ; 0 - 1 = 65535 = OxFfff

MULTIPLY ($a, 1001) ; 65535 * 1001 = 64535 = Oxfcl7

DIVIDE ($a, 101) ; 64535 / 101 = 638 = 0x027e

REMAINDER ($a, 11) ; 638 % 11 = 0 = 0x0000

OUTPUT (64, 4) ; output 0x0000 0000
; The multitypes are references
ADD ($b, $start) ; 0+ 1 =1 = 0x0001

; I the message is 0x00
SUBTRACT ($b, $type) ; 1 - 65535 = 2 = 0x0002
MULTIPLY ($b, $b) ; 2 * 2 = 4 = 0x0004
DIVIDE ($a, $b) ; 0O/ 4 =0 = 0x0000
REMAINDER ($b, $type) ; 4 % 65535 = 4 = 0x0004

Surtees & West Informational [Page 6]

RFC 4465 SigComp Torture Tests June 2006

OUTPUT (64, 4) ; output 0x0000 0004

; 1T the message is 0x01, $type = 0
; so decompression failure occurs at
; REMAINDER ($b, $type)

; I the message is 0x02, $type = 1 so
; $b becomes 0 and decompression failure
; occurs at DIVIDE ($a, $b)

END-MESSAGE (O, 0, O, 0, 0, 0, 0)

IT the compressed message is 0x00, then the output of the code is
0x0000 0000 0000 0004 and the execution cost should be 25 UDVM
cycles. However, if the compressed message is 0x01 or 0x02, then
decompression failure occurs.

2.3. Sorting

This section gives assembly code to test the SORT-ASCENDING and SORT-
DESCENDING instructions. The code is desighed to test that the
following boundary cases have been correctly implemented:

1. The sorting instructions sort integers with the same value, iIn
which case the original ordering of the integers must be
preserved.

at (128)

SORT-DESCENDING (256, 2, 23)
SORT-ASCENDING (256, 2, 23)

OUTPUT (302, 45)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

at (256)

word (10, 10, 17, 7, 22, 3, 3, 3, 19, 1, 16, 14, 8, 2, 13, 20, 18,
23, 15, 21, 12, 6, 9)

word (28263, 8297, 30057, 8308, 26996, 11296, 31087, 29991, 8275,
18031, 28263, 24864, 30066, 29284, 28448, 29807, 28206, 11776, 28773,
28704, 28276, 29285, 28265)

The output of the code is 0x466F 7264 2c20 796fF 7527 7265 2074 7572

6e69 6e67 2069 6e74 620 6120 7065 6e67 7569 6e2e 2053 746F 7020 6974
2e, and the number of cycles required is 371.

Surtees & West Informational [Page 7]

RFC 4465 SigComp Torture Tests June 2006

2.4. SHA-1
This section gives assembly code to test the SHA-1 instruction. The
code performs four tests on the SHA-1 algorithm itself and, in
addition, checks the following boundary cases specific to the UDVM:

1. The input string for the SHA-1 hash is obtained by byte copying
over an area of the UDVM memory.

2. The SHA-1 hash overwrites its own Input string.

at (64)
:byte copy left pad (2)
byte copy_right pad (2)
zhash_value pad (20)
at (128)

SHA-1 (test one, 3, hash_value)
OUTPUT (hash_value, 20)

SHA-1 (test_two, 56, hash_value)
OUTPUT (hash_value, 20)

; Set up a 1l-byte buffer

LOAD (byte_copy_left, test_three)

LOAD (byte_copy_right, test four)

; Perform SHA-1 over 16384 bytes in a 1-byte buffer
SHA-1 (test_three, 16384, hash_value)

OUTPUT (hash_value, 20)

; Set up an 8-byte buffer

LOAD (byte_copy_left, test_four)

LOAD (byte copy_right, test end)

; Perform SHA-1 over 640 bytes in an 8-byte buffer
SHA-1 (test_four, 640, test four)

OUTPUT (test_four, 20)

END-MESSAGE (0O, 0, 0, 0, 0, 0, 0)

:test_one

byte (97, 98, 99)

test_two

Surtees & West Informational [Page 8]

RFC 4465 SigComp Torture Tests June 2006

byte (97, 98, 99, 100, 98, 99, 100, 101, 99, 100, 101, 102, 100, 101,
102, 103, 101, 102, 103, 104, 102, 103, 104, 105, 103, 104, 105, 106,
104, 105, 106, 107, 105, 106, 107, 108, 106, 107, 108, 109, 107, 108,
109, 110, 108, 109, 110, 111, 109, 110, 1112, 112, 110, 111, 112, 113)
:test_three

byte (97)

:test_four

byte (48, 49, 50, 51, 52, 53, 54, 55)

:test_end

The output of the code is as follows:

0xa999 3e36 4706 816a ba3e 2571 7850 c26c¢ 9cd0 d89ad
0x8498 3e44 1c3b d26e baae 4aal 951 29e5 e546 70f1
Ox12ff 347b 427 d69e 132 8e6f 4b55 73e3 666e 122f
0x4f46 0452 ebb5 6393 4f46 0452 ebb5 6393 4f46 0452

Executing the code costs a total of 17176 UDVM cycles.

2.5. LOAD and MULTILOAD
This section gives assembly code to test the LOAD and MULTILOAD
instructions. The code is designed to test the following boundary

cases:

1. The MULTILOAD instruction overwrites itself or any of its
operands, in which case decompression failure occurs.

2. The memory references of MULTILOAD instruction operands are
evaluated step-by-step rather than all at once before starting to

copy data.
at (64)
:start pad (1)
:start_Isb pad (1)
at (128)

set (location_a, 128)
set (location_b, 132)

Surtees & West Informational [Page 9]

RFC 4465 SigComp Torture Tests June 2006

LOAD (128, 132) ; address 128 contains 132 = 0x0084
LOAD (130, $location_a) ; address 130 contains 132 = 0x0084
LOAD ($location_a, 134) ; address 132 contains 134 = 0x0086
LOAD ($location_b, $location_b) ; address 134 contains 134 = 0x0086

OUTPUT (128, 8) output 0x0084 0084 0086 0086

INPUT-BYTES (1, start Isb, decompression_failure)
MULTIPLY ($start, 2)

ADD ($start, 60)

MULTILOAD ($start, 3, overlap_start, overlap_end, 128)
:position

set (overlap_start, (position - 7))

MULTILOAD ($start, 4, 42, 128, $location_a, $location_b)
zend

set (overlap_end, (end - 1))

OUTPUT (128, 8)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

:decompression_failure
DECOMPRESSION-FAILURE

The INPUT-BYTES, MULTIPLY, and ADD instructions give the following
values for $start = $64 just before the MULTILOADs begin:

Input $start before 1st MULTILOAD

0x00 60

0x01 62

0x02 64

Consequently, after the first MULTILOAD the values of $start are the
following:

Input $start before 2nd MULTILOAD

0x00 128

0x01 overlap_end = 177 = last byte of 2nd MULTILOAD instruction
0x02 overlap_start = 162 = 7 bytes before 2nd MULTILOAD

instruction

Surtees & West Informational [Page 10]

RFC 4465 SigComp Torture Tests June 2006

Consequently, execution of the 2nd MULTILOAD (and any remaining code)
gives the following:

Input Outcome

0x00 MULTILOAD reads and writes operand by operand. The output is
0x0084 0084 0086 0086 002a 0080 002a 002a, and the cost of
executing the code is 36 UDVM cycles.

0x01 The first write of the MULTILOAD instruction would overwrite
the last byte of the final MULTILOAD operand, so
decompression failure occurs.

0x02 The last write of the MULTILOAD would overwrite the MULTILOAD
opcode, so decompression failure occurs.

2.6. COPY

This section gives assembly code to test the COPY instruction. The
code is designed to test that the following boundary cases have been
correctly implemented:

1. The COPY instruction copies data from both outside the circular
buffer and inside the circular buffer within the same operation.

2. The COPY instruction performs byte-by-byte copying (i.e., some of
the later bytes to be copied are themselves written into the UDVM
memory by the COPY instruction currently being executed).

3. The COPY instruction overwrites itself and continues executing.

4. The COPY instruction overwrites the UDVM registers byte copy left
and byte copy_right.

5. The COPY instruction writes to and reads from the right of the
buffer beginning at byte copy_right.

6. The COPY instruction implements byte copying rules when the
destination wraps around the buffer.

at (64)
:byte copy left pad (2)
:byte copy right pad (2)

Surtees & West Informational [Page 11]

RFC 4465 SigComp Torture Tests June 2006

at (128)

; Set up buffer between addresses 64 & 128
LOAD (32, 16384)
LOAD (byte_copy_left, 64)
LOAD (byte_copy_right, 128)
COPY (32, 128, 33) Copy byte by byte starting to the left of
the buffer, into the buffer and wrapping
the buffer (inc overwriting the
boundaries)

LOAD (64, 16640) ; Change the start of the buffer to be
; beyond bytecode

COPY (64, 85, 65) ; Copy to the left of the buffer,
; overwriting this instruction

OUTPUT (32, 119) ; Output 32 * 0x40 + 86 * 0x41 + 0x55,
; which is 32 * @~ + 86 “A” + ~U~

; Set a new small buffer
LOAD (byte_copy_left, 32)
LOAD (byte_copy_right, 48)

MEMSET (32, 4, 65, 1) Set first 4 bytes of the buffer to be

© *ABCD”
COPY (32, 4, 48) ; Copy from byte copy_right (i.e., not
; In buffer)
OUTPUT (48, 4) ; Output 0x4142 4344, which is “ABCD”
COPY (48, 4, 46) ; Copy from two before byte copy right to
; wrap around the buffer
OUTPUT (32, 2) ; Output 0x4344, which is “CD”

END-MESSAGE (0O, O, O, 0O, 0, O, 0)

The output is above, and executing the code costs a total of 365 UDVM
cycles.

2.7. COPY-LITERAL and COPY-OFFSET
This section gives assembly code to test the COPY-LITERAL and COPY-
OFFSET instructions. The code is designed to test similar boundary

cases to the code for the COPY instruction, as well as the following
condition specific to COPY-LITERAL and COPY-OFFSET:

Surtees & West Informational [Page 12]

RFC 4465 SigComp Torture Tests June 2006

1. The COPY-LITERAL or COPY-OFFSET instruction overwrites the value
of its destination.

2. The COPY-OFFSET instruction reads from an offset that wraps
around the buffer (i.e., the offset is larger than the distance
between byte copy left and the destination).

at (64)
byte copy_left pad (2)
byte copy_right pad (2)
:destination pad (2)
:offset pad (2)
at (128)

; Set up circular buffer, source, and
; destination

LOAD (32, 16640)

LOAD (byte_copy_ left, 64)

LOAD (byte copy right, 128)

LOAD (destination, 33)

COPY-LITERAL (32, 128, $destination) ; Copy from the left of the
; buffer overwriting bcl, bcr, and
; destination wrapping around the buffer
OUTPUT (64, 8) ; Check destination has been updated
; Output 0x4141 4141 0061 4141

LOAD (destination, copy)

zcopy ; Overwrite the copy instruction
COPY-LITERAL (32, 2, $destination)

OUTPUT (copy, 2) ; Output 0x4141

LOAD (byte_copy_left, 72) ; Set up new circular buffer

LOAD (byte copy right, 82)

LOAD (destination, 82) ; Set destination to byte copy right
MEMSET (72, 10, 65, 1) ; Fill the buffer with 0x41 - 4A
COPY-OFFSET (2, 6, $destination) ; Copy from within circular

: buffer to outside buffer

LOAD (offset, 6)

COPY-OFFSET ($offset, 4, $destination)
; Copy from byte copy right
; S0 reading outside buffer

Surtees & West Informational [Page 13]

RFC 4465 SigComp Torture Tests June 2006

OUTPUT ($byte_copy_right, 10) ; Output Ox494A 4142 4344 494A 4142,
; which is “1JABCDIJAB”

; Put destination within the
buffer
Copy where destination wraps
Output Ox004A

LOAD (destination, 80)

COPY-OFFSET (4, 4, $destination)
OUTPUT (destination, 2)

COPY-OFFSET (5, 4, $destination) Copy where offset wraps from
left back around to the right
Output 0x004E

Output the circular buffer
Ox4748 4845 4647 4748 4546,

which s *GHHEFGGHEF~

OUTPUT (destination, 2)
OUTPUT ($byte_copy_left, 10)

END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

The output of the code iIs above, and the cost of execution is 216
UDVM cycles.

2.8. MEMSET
This section gives assembly code to test the MEMSET instruction. The
code is designed to test that the following boundary cases have been
correctly implemented:

1. The MEMSET instruction overwrites the registers byte copy left
and byte copy_right.

2. The output values of the MEMSET instruction do not lie between O
and 255 inclusive (in which case they must be taken modulo 278).

at (64)
byte copy_left pad (2)
byte copy_right pad (2)
at (128)

LOAD (byte_copy_left, 128) ; sets up a circular buffer
LOAD (byte_copy_right, 129) ; of 1 byte between 0x0080 and 0x0081

MEMSET (64, 129, 0, 1) ; fills up the memory in the range
; 0x0040-0x007F with O0x00, ... Ox3f;

; then it writes successively at

; 0x0080 the following values 0x40, ... 0x80

; as a side effect, the values of

; bcl and bcr are modified.

Surtees & West Informational [Page 14]

RFC 4465 SigComp Torture Tests June 2006

before and during the MEMSET:

byte copy left: 0x0080 byte copy right: 0x0081
after the MEMSET:

byte copy_ left: 0x0001 byte copy_ right: 0x0203

MEMSET (129, 15, 64, 15) ; Fills the memory range 0x0080-0x008f
; with values 0x40, Ox4f, ... Oxf4, 0x03, O0x12.
; as a side effect, it overwrites a
; part of the code including itself

OUTPUT (128, 16) ; outputs 0x8040 4f5e 6d7c 8b9a
; a9%b8 c7d6 e5f4 0312

END-MESSAGE (0, O, O, 0, 0, O, 0)

The output of the code is 0x8040 4f5e 6d7c 8b9a a9b8 c7d6 e5f4 0312.
Executing the code costs 166 UDVM cycles.

2.9. CRC
This section gives assembly code to test the CRC instruction. The

code does not test any specific boundary cases (as there do not
appear to be any) but focuses instead on verifying the CRC algorithm.

at (64)

byte copy_left pad (2)
byte copy_right pad (2)
zcrc_value pad (2)
:crc_string_a pad (24)
:crc_string_ b pad (20)
at (128)

MEMSET (crc_string_a, 24, 1, 1) ; sets up between 0x0046 and 0x005d
; a byte string containing 0x01,
; Ox02, ... 0Ox18

MEMSET (crc_string_b, 20, 128, 1) ; sets up between 0x005e and 0x0071
; a byte string containing 0x80,
; Ox81, ... 0x93

INPUT-BYTES (2, crc_value, decompression_failure)
; reads In 2 bytes representing
; the CRC value of the byte string
; of 44 bytes starting at 0x0046

Surtees & West Informational [Page 15]

RFC 4465 SigComp Torture Tests June 2006

CRC ($crc_value, crc_string_a, 44, decompression_failure)

; computes the CRC value of the
byte string crc_string_a
concatenated with byte string
crc_string_b (with a total
length of 44 bytes).
if the computed value does
not match the 2-byte value read
previously, the program ends
with DECOMPRESSION-FAILURE.

END-MESSAGE (O, 0, O, 0, 0, 0, 0)

:decompression_failure
DECOMPRESSI0ON-FAILURE

IT the compressed message is 0x62cb, then the code should
successfully terminate with no output, and with a total execution
cost of 95 UDVM cycles. For different 2-byte compressed messages,
the code should terminate with a decompression failure.

2.10. INPUT-BITS
This section gives assembly code to test the INPUT-BITS instruction.
The code is designed to test that the following boundary cases have
been correctly implemented:

1. The INPUT-BITS instruction changes between any of the four
possible bit orderings defined by the input _bit order register.

2. The INPUT-BITS instruction inputs 0 bits.

3. The INPUT-BITS instruction requests data that lies beyond the end
of the compressed message.

at (64)

:byte copy left pad (2)
:byte copy right pad (2)
input_bit_order pad (2)
tresult pad (2)

Surtees & West Informational [Page 16]

RFC 4465 SigComp Torture Tests June 2006

at (128)
istart

INPUT-BITS ($input_bit order, result, end_of _message) ; reads in

; exactly as many bits as the 2-byte
value written in the input_bit order
register, get out of the loop when
no more bits are available at input.

OUTPUT (result, 2) ; outputs as a 2-byte integer
; the previously read bits

ADD ($input_bit order, 1) ; iIf at the beginning of this loop the
; register input_bit order is O,

REMAINDER ($input_bit_order, 7) ; then its value varies periodically
; like this: 2, 4, 6, 1, 3, 5, 7.

ADD (Sinput_bit_order, 1) ; that gives for the FHP bits: 010,
; 100, 110, 001, O11, 101, 111

JUMP (start) ; run the loop once more
end_of_message
END-MESSAGE (0, O, O, 0, 0, O, 0)
An example of a compressed message is 0x932e ac71, which decompresses
to give the output 0x0000 0002 0002 0013 0000 0003 00la 0038.
Executing the code costs 66 UDVM cycles.

2.11. INPUT-HUFFMAN
This section gives assembly code to test the INPUT-HUFFMAN
instruction. The code is designed to test that the following

boundary cases have been correctly implemented:

1. The INPUT-HUFFMAN instruction changes between any of the four
possible bit orderings defined by the input bit order register.

2. The INPUT-HUFFMAN iInstruction inputs O bits.

3. The INPUT-HUFFMAN instruction requests data that lies beyond the
end of the compressed message.

Surtees & West Informational [Page 17]

RFC 4465 SigComp Torture Tests June 2006

at (64)

byte copy_left pad (2)
byte copy_right pad (2)
input_bit_order pad (2)
:result pad (2)
at (128)

:start

INPUT-HUFFMAN (result, end_of message, 2, $input_bit order, O,
$input_bit_order, $input_bit order, $input_bit_order, 0, 65535, 0)
OUTPUT (result, 2)

ADD ($input_bit order, 1)
REMAINDER ($input_bit_order, 7)
ADD (Sinput_bit_order, 1)

JUMP (start)

end_of_message

END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

An example of a compressed message is 0x932e ac71 66d8 6fFf, which
decompresses to give the output 0x0000 0003 0008 04d7 0002 0003 0399
30fe. Executing the code costs 84 UDVM cycles.

As the code is run, the input_bit order changes through all possible
values to check usage of the H and P bits. The number of bits to

input each time is taken from the value of input bit order. The
sequence is the following:

Input_bit_order (bin) Total bits input by Huffman Value
000 0 0

010 2 3

100 4 8

110 12 1239
001

P-bit changed, throw away 6 bits

001 1 2

011 3 3

101 10 921
111 14 12542
010

P-bit changed, throw away 4 bits

010 0 - not enough bits so terminate

Surtees & West Informational [Page 18]

RFC 4465 SigComp Torture Tests June 2006

2.12. INPUT-BYTES
This section gives assembly code to test the INPUT-BYTES instruction.
The code is designed to test that the following boundary cases have
been correctly implemented:
1. The INPUT-BYTES instruction inputs 0O bytes.

2. The INPUT-BYTES instruction requests data that lies beyond the
end of the compressed message.

3. The INPUT-BYTES instruction is used after part of a byte has been
input (e.g., by the INPUT-BITS instruction).

at (64)

byte copy_left pad (2)
:byte copy_right pad (2)
-input_bit_order pad (2)
‘result pad (2)
zoutput_start pad (4)
zoutput_end

at (128)

LOAD (byte copy left, output start)
LOAD (byte_copy_right, output_end)

start

INPUT-BITS ($input_bit_order, result, end_of_message)
OUTPUT (result, 2)

ADD ($input_bit order, 2)
REMAINDER ($input_bit_order, 7)

INPUT-BYTES ($input_bit_order, output_start, end_of _message)
OUTPUT (output_start, $input _bit order)

ADD ($input_bit order, 1)
JUMP (start)

end_of _message

END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

Surtees & West Informational [Page 19]

RFC 4465 SigComp Torture Tests June 2006

An example of a compressed message is 0x932e ac71 66d8 6fbl 592b dc9a
9734 d847 a733 874e 1bcb cd51 b5dc 9659 9d6a, which decompresses to
give the output 0x0000 932e 0001 b166 d86f bl00 1a2b 0003 9a97 34d8
0007 0001 3387 4e00 08dc 9651 b5dc 9600 599d 6a. Executing the code
costs 130 UDVM cycles.

As the code is run, the input_bit order changes through all possible
values to check usage of the F and P bits. The number of bits or
bytes to input each time is taken from the value of input_bit_order.
For each INPUT-BYTES instruction, the remaining bits of the byte are
thrown away. The P-bit always changes on the byte boundary so no
bits are thrown away. The sequence is the following:

Input_bit order (bin) Input bits Input bytes Output

000 0 0x0000

010 2 0x932e

011 3 0x0001

101 5 Oxb166 d866 bl
110 6 0x001a

001 1 0x2b

010 2 0x0003

100 4 0x9a97 34d8
101 5 0x0007

000 0

001 1 0x0001

011 3 0x3384 4e

100 4 0x0008

110 6 Oxdc96 51b5 dc96
111 7 0x0059

010 2 0x9d6a

011 3 - no bits left so terminate

2.13. Stack Manipulation
This section gives assembly code to test the PUSH, POP, CALL, and
RETURN instructions. The code is designed to test that the following
boundary cases have been correctly implemented:

1. The stack manipulation instructions overwrite the UDVM register
stack_location.

2. The CALL instruction specifies a reference operand rather than an
absolute value.

3. The PUSH instruction pushes the value contained in stack fill
onto the stack.

4. The stack location register contains an odd integer.

Surtees & West Informational [Page 20]

RFC 4465

at (64)

byte copy_left
byte copy_right
input_bit_order
:stack_location
:next_address

at (128)

LOAD (stack_location,
PUSH (2)

PUSH ($64)

PUSH (66)

OUTPUT (64, 8)

POP (64)
POP ($stack_location)

POP (stack_location)

OUTPUT (64, 8)
JUMP (address_a)

at (192)
address_a

LOAD (stack_location,

SigComp Torture Tests June 2006

64)

32)

pad (2)
pad (2)
pad (2)
pad (2)
pad (2)

Stack now contains 2, 1, 66
so $stack location = 66

Output 0x0003 0002 0001 0042

Pop value 66 from address 70 to address 64
Pop value 1 from address 68 to address 66

so stack Fill is overwritten to be 1

Pop value 1 from address 68 to address 70

Output 0x0042 0000 0001 0001

LOAD (next_address, address_c)
SUBTRACT ($next_address, address_b) ; next_address = 64

CALL (address_b)

at (256)

address b

CALL ($next_address)
at (320)

address_c

LOAD (stack_location, 383)

LOAD (383, 26)

; push 204 on stack

; push 256 on stack

; overwrite $stack_location with 26

MULTILOAD (432, 3, 1, 49153, 32768)

Surtees & West

Informational [Page 21]

RFC 4465 SigComp Torture Tests June 2006

; write bytes so that 433 and 434
; contain 0x01cO = 448 and
; 435 and 436 contain 0x0180 = 384

RETURN ; pop 383 from the stack and jump
there = 384, which is Isb of
stack Fill, which now contains 25,
which is UDVM instruction RETURN
pop 448 from the stack and jump
there

at (448)
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

The output of the code is 0x0003 0002 0001 0042 0042 0000 0001 0001,
and a total of 40 UDVM cycles are used.

2.14. Program Flow
This section gives assembly code to test the JUMP, COMPARE, and
SWITCH instructions. The code is designed to test that the following

boundary cases have been correctly implemented:

1. The address operands are specified as references to memory
addresses rather than as absolute values.

at (64)
next_address pad (2)
:counter pad (1)
:counter_lIsb pad (1)
:switch_counter pad (2)
at (128)

LOAD (switch_counter, 4)

address_a

LOAD (next_address, address_c)

SUBTRACT ($next_address, address_b) ; address_c - address b
OUTPUT (counter_Isb, 1)

address b

JUMP ($next_address) ; Jump to address_c

:address_c

Surtees & West Informational [Page 22]

RFC 4465 SigComp Torture Tests June 2006

ADD ($counter, 1)

LOAD (next_address, address_a)

SUBTRACT ($next_address, address_d) ; address_a - address_d
OUTPUT (counter_Isb, 1)

:address d
COMPARE ($counter, 6, $next_address, address c, address_e)

; counter < 6, $next _address gives
; jump to address_a

:address_e

SUBTRACT ($switch_counter, 1) ; switch_counter = 3
LOAD (next_address, address_a)

SUBTRACT ($next_address, address_¥T) ; address_a - address T

OUTPUT (counter_Isb, 1)
:address_fT
SWITCH (4, $switch_counter, address_g, $next _address, address_c,
address_e)
; when $switch_counter = 1,
; $next_address gives jump to
; address_a
raddress_g
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

The output of the code is 0x0001 0102 0203 0304 0405 0506 0707 0708
0808 0909, and a total of 131 UDVM cycles are used.

2.15. State Creation
This section gives assembly code to test the STATE-CREATE and STATE-
FREE instructions. The code is designed to test that the following
boundary cases have been correctly implemented:

1. An item of state is created that duplicates an existing state
item.

2. An item of state is freed when the state has not been created.
3. An item of state is created and then freed by the same message.

4. The STATE-FREE instruction frees a state item by sending fewer
bytes of the state_identifier than the minimum_access length.

Surtees & West Informational [Page 23]

RFC 4465 SigComp Torture Tests June 2006

5. The STATE-FREE instruction has partial _identifier_length operand
shorter than 6 or longer than 20.

6. The STATE-FREE instruction specifies a partial_identifier that
matches with two state items iIn the compartment.

7. The bytes of the identifier are written to the position specified
in the STATE-FREE instruction after the STATE-FREE instruction
has been run (and before END-MESSAGE).

at (64)

:byte copy left pad (2)
:byte_copy_right pad (2)
:states pad (1)
:states_Isb pad (1)
:min_len pad (1)
:min_len_Isb pad (1)
:state_identifier pad (20)

set (state_length, 10)

at (127)
:decompression_failure
at (128)

INPUT-BYTES (1, states_Isb, decompression_failure)

:test_one
LSHIFT ($states, 11)
COMPARE ($states, 32768, test two, create state a2, create_state a2)

:Create_state a2
STATE-CREATE (state_length, state_address2, 0, 20, 0)

:test_two
LSHIFT ($states, 1)
COMPARE ($states, 32768, test three, create_state_a, create_state_a)

:create_state_a
STATE-CREATE (state_length, state_address, 0, 20, 0)

:test_three

LSHIFT ($states, 1)
COMPARE ($states, 32768, test four, free_ state, free_state)

Surtees & West Informational [Page 24]

RFC 4465 SigComp Torture Tests June 2006

:free_state

INPUT-BYTES (1, min_Jlen_Isb, decompression_failure)
STATE-FREE (state_identifier, $min_len)

COPY (identifierl, $min_len, state_identifier)

:test_four

LSHIFT ($states, 1)
COMPARE ($states, 32768, test five, free state2, free_state?2)

:free_state2
STATE-FREE (identifierl, 6)

:test_five
LSHIFT ($states, 1)
COMPARE ($states, 32768, end, create_state_ b, create_state_b)

:create_state b
END-MESSAGE (0, O, state length, state address, 0, 20, 0)

end
END-MESSAGE (0, 0, 0, 0, 0, 0, 0)

:identifierl
byte (67, 122, 232, 10, 15, 220, 30, 106, 135, 193, 182, 42, 118,
118, 185, 115, 49, 140, 14, 245)

at (256)
:state_address
byte (192, 204, 63, 238, 121, 188, 252, 143, 209, 8)

:state_address2
byte (101, 232, 3, 82, 238, 41, 119, 23, 223, 87)

Upon reaching the END-MESSAGE instruction, the UDVM does not output
any decompressed data, but instead may make one or more state
creation or state free requests to the state handler. Assuming that
the application does not veto the state creation request (and that
sufficient state memory is available) the code results in 0, 1, or 2
state items being present in the compartment.

The following table lists ten different compressed messages, the
states created and freed by each, the number of states left after
each message, and the number of UDVM cycles used. There are 3 state
creation instructions:

create state_a, which has hash identifierl
create state_b (in END-MESSAGE), which is identical to state a

Surtees & West Informational [Page 25]

RFC 4465

SigComp Torture Tests

June 2006

create state_a2, which has a different identifier, but the first 6
bytes are the same as those of identifierl.

Message:
0x01
0x02
0x03

0x0405
0x0415

0x0406
0x09

0x1e06

0x1e07

Oxlel4d

2.16. STATE-ACCESS

This section gives assembly code to test the STATE-ACCESS

instruction

Effect:
Ccreate state b

free
free

free
free

free

(id1,
(id1,

(id1,
(id1,

(id1,

6)
6)

5)
21)

6) =

Ccreate state_a;

create state a2

free (id1, 6)
free (idl, 6)

Create state_a2?

free (id1, 7)
free (id1, 6)

state i1tems:

state b
state b; create state b

1
0
1

#cycles:
23
14
24

Decompression failure
Decompression failure

state b
create state b

; Create state a;
matches both so no free;
matches both so no free;

; Create state_a;
state_a;
state_a2

create state_a2; create state_a;
free (idl, 20) = state_a;
free (idl, 6) =

state_a2?

0

1

23

34

46

47

60

. The code is designed to test that the following
boundary cases have been correctly implemented:

1. A subset of the bytes contained in a state item is copied to the

UDVM memory.

2. Bytes are copied from beyond the end of the state value.

3. The state_instruction operand is set to O.

4. The state cannot be accessed because the partial state identifier
is too short.

5. The state identifier is overwritten by the state item being

accesse

d.

The following bytecode needs to be run first to set up the state for
the rest of the test.

Surtees & West

Informational

[Page 26]

RFC 4465 SigComp Torture Tests June 2006

at (128)
END-MESSAGE (0, O, state length, state start, 0, 20, 0)

The bytes between state start and state end are derived from
translation of the following mnemonic code:

at (512)

OUTPUT (data, 4)
END-MESSAGE (0,0,0,0,0,0,0)
data

byte (116, 101, 115, 116)

at (512)

:state_start

byte (34, 162, 12,4, 35, 0, 0, O, 0, O, O, O, 116, 101, 115, 116)
:state_end

set (state_length, (state_end - state start))

This iIs the bytecode for the rest of the test.

at (64)

:byte copy left pad (2)
:byte copy right pad (2)
ztype pad (1)
:type_Isb pad (1)
:state value pad (4)
at (127)

:decompression_failure

at (128)

INPUT-BYTES (1, type_Isb, decompression_failure)
COMPARE ($type, 1, execute_state, extract_state, error_conditions)

:execute_state

STATE-ACCESS (state_identifier, 20, 0, 0, 0, 512)
lextract_state

STATE-ACCESS (state_identifier, 20, 12, 4, state value, 0)
OUTPUT (state_value, 4)

JUMP (end)

serror_conditions

Surtees & West Informational [Page 27]

RFC 4465 SigComp Torture Tests June 2006

COMPARE ($type, 3, state _not_found, id_too_short, state_too_short)
:state_not_found

STATE-ACCESS (128, 20, 0, 0, 0, 0)
JUMP (end)

:id_too_short

STATE-ACCESS (state_identifier, 19, 6, 4, state value, 0)
JUMP (end)

:state_too_short

STATE-ACCESS (state_identifier, 20, 12, 5, state_value, 0)
JUMP (end)

at (484)

zend

END-MESSAGE (0, O, O, 0, 0, 0, 0)
at (512)

:state_identifier

byte (0x5d, Oxf8, Oxbc, 0x3e, 0x20, 0x93, O0xb5, Oxab, Oxel, Oxf1,
0x70, 0x13, 0x42, Ox4c, Oxe7, Oxfe, 0Ox05, OxeO, O0x69, 0x39)

IT the compressed message is 0x00, then the output of the code is
0x7465 7374, and a total of 26 UDVM cycles are used. If the
compressed message is 0x01, then the output of the code is also
0x7465 7374 but in this case using a total of 15 UDVM cycles. If the
compressed message iIs 0x02, 0x03, or 0x04, then decompression failure
occurs.

3. Torture Tests for Dispatcher

The following sections give code to test the various functions of the
SigComp dispatcher.

3.1. Useful Values
This section gives assembly code to test that the SigComp "Useful
Values™ are correctly initialized in the UDVM memory. It also tests

that the UDVM is correctly terminated if the bytecode uses too many
UDVM cycles or tries to write beyond the end of the available memory.

Surtees & West Informational [Page 28]

RFC 4465 SigComp Torture Tests June 2006

The code tests that the following boundary cases have been correctly

implemented:

1. The bytecode uses exactly as many UDVM cycles as are available
(in which case no problems should arise) or one cycle too many
(in which case decompression failure should occur). A liberal
implementation could allow more cycles to be used than are

strictly available, in which case decompression failure will not

occur. This is an implementation choice. If this choice is
made, the implementer must be sure that the cycles are checked
eventually and that decompression failure does occur when
bytecode uses an excessive number of cycles. This is tested in
Section 3.2.

2. The bytecode writes to the highest memory address available (in
which case no problems should arise) or to the memory address
immediately following the highest available address (in which
case decompression failure must occur).

zudvm_memory_size pad (2)
:cycles_per_bit pad (2)
:sigcomp_version pad (2)
:partial_state_id_length pad (2)
:state_length pad (2)
at (64)

byte copy_left pad (2)
byte copy_right pad (2)
:remaining_cycles pad (2)
:check_memory pad (1)
:check_memory_Isb pad (1)
:check_cycles pad (1)
:check_cycles_Isb pad (1)
at (127)

:decompression_failure

at (128)

; Set up a 1-byte buffer
LOAD (byte_copy_left, 32)
LOAD (byte_copy_right, 33)

:test _version

; Input a byte containing the version of SigComp being run
INPUT-BYTES (1, check_memory Isb, decompression_failure)
COMPARE ($sigcomp_version, $check_memory, decompression_failure,
test_state access, decompression_failure)

Surtees & West Informational [Page 29]

RFC 4465 SigComp Torture Tests June 2006

:test_state_access

COMPARE ($partial_state id_length, 0, decompression_failure,
test_length_equals_zero, test state_length)

:test_length_equals_zero
; No state was accessed so state_length
; should be zero (first message)
COMPARE ($state_length, 0, decompression_failure, end,
decompression_failure)

:test_state_length

; State was accessed so state length

; should be 960
COMPARE ($state_length, 960, decompression_failure, test _udvm memory,
decompression_failure)

:test_udvm_memory
; Copy one byte to
; udvm_memory_size + input - 1
; Succeed when input byte is 0x00
; Fail when input byte is 0x01

INPUT-BYTES (1, check memory Isb, decompression_failure)
ADD ($check_memory, $udvm_memory_size)

SUBTRACT ($check_memory, 1)

COPY (32, 1, $check_memory)

ctest_udvm_cycles

INPUT-BYTES (1, check cycles Isb, decompression_failure)

; Work out the total number of cycles available to the UDVM
; total _UDVM_cycles = cycles per_bit * (8 * message_size + 1000)

; = cycles per_bit * (8 * (partial_state_id_length + 3) + 1000)
LOAD (remaining_cycles, $partial_state id_length)

ADD ($remaining_cycles, 3)

MULTIPLY ($remaining_cycles, 8)

ADD ($remaining_cycles, 1000)

MULTIPLY ($remaining_cycles, $cycles per_bit)

ADD ($remaining_cycles, $check cycles)

set (cycles _used_by bytecode, 856)

Surtees & West Informational [Page 30]

RFC 4465 SigComp Torture Tests June 2006

SUBTRACT ($remaining_cycles, cycles_used_by_bytecode)

COPY (32, $remaining_cycles, 32)
; Copy to use up all cycles available + input byte
; Succeeds when input byte = 0x00
; Fail when input byte = 0x01

zend
; Create 960 bytes of state for future
; reference

END-MESSAGE (0, 0O, 960, 64, 128, 6, 0)

The bytecode must be executed a total of four times in order to fully
test the SigComp Useful Values. In the first case, the bytecode is
uploaded as part of the SigComp message with a 1-byte compressed
message corresponding to the version of SigComp being run. This
causes the UDVM to request creation of a new state item and uses a
total of 968 UDVM cycles.

Subsequent tests access this state by uploading the state identifier
as part of the SigComp message. Note that the SigComp message should
not contain a returned feedback item (as this would cause the
bytecode to calculate the total number of available UDVM cycles
incorrectly).

A 3-byte compressed message is required for the second and subsequent
cases, the first byte of which is the version of SigComp in use,
Oxnn. If the message is 0xnn0000, then the UDVM should successfully
terminate using exactly the number of available UDVM cycles.

However, 1If the message is 0xnn0001, then the UDVM should use too
many cycles and hence terminate with decompression failure.
Furthermore, if the message is 0xnn01l00, then decompression failure
must occur because the UDVM attempts to write beyond its available
memory .

3.2. Cycles Checking

As discussed in Section 3.1, it is possible to write an
implementation that takes a liberal approach to checking the cycles
used and allows some extra cycles. The implementer must be sure that
decompression failure does not occur too early and that in the case
of excessive use of cycles, decompression failure does eventually
occur. This test checks that:

1. Decompression failure occurs eventually when there is an infinite
loop.

Surtees & West Informational [Page 31]

RFC 4465 SigComp Torture Tests June 2006

at (64)
:byte copy left pad (2)
byte copy_right pad (2)
:value pad (2)
zcopy_next pad (2)
at(128)

MULTILOAD (byte copy_ left, 4, 32, 41, 0, 34)
; Set up a 10-byte buffer

Set the value to copy
Copy it 100 times,
output the value,
increment the counter

:loop

COPY (value, 2, $byte copy_left)
COPY-OFFSET (2, 100, $copy_next)
OUTPUT (value, 2)

ADD ($value, 1)

JUMP (loop)

IT the cycles are counted exactly and cycles per bit (cpb) 16, then
decompression failure will occur at COPY-OFFSET when value 180 =
OxB4. I1f cpb = 32, then decompression failure will occur when value
= 361 = 0x0169. If they are not counted exactly, then decompression
failure MUST occur eventually.

3.3. Message-based Transport
This section provides a set of messages to test the SigComp header
over a message-based transport such as UDP. The messages test that
the following boundary cases have been correctly implemented:

1. The UDVM bytecode is copied to different areas of the UDVM
memory .

2. The decompression memory size Is set to an incorrect value.

3. The SigComp message is too short.

4_. The destination address is invalid.

The basic version of the code used in the test is given below. Note

that the code is designed to calculate the decompression memory size
based on the Useful Values provided to the UDVM:

Surtees & West Informational [Page 32]

RFC 4465 SigComp Torture Tests June 2006

udvm_memory_size pad (2)
:cycles _per_bit pad (2)
:sigcomp_version pad (2)
:partial_state_id_length pad (2)
:state_length pad (2)
at (128)

:code_start

; udvm_memory_size for message-based transport
; = DMS - total _message_size

ADD ($udvm_memory_size, total _message size)
OUTPUT (udvm_memory_size, 2)
END-MESSAGE (0O, O, O, 0, 0, 0, 1)

:code_end

set (header_size, 3)
set (code_size, (code_end - code_start))
set (total _message size, (header_size + code_size))

A number of complete SigComp messages are given below, each
containing some or all of the above code. In each case, it is
indicated whether the message will successfully output the
decompression memory size or whether it will cause a decompression
failure to occur (together with the reason for the failure):

SigComp message: Effect:

0xf8 Fails (message too short)

0xf800 Fails (message too short)

0xf800 €106 0011 2200 0223 Outputs the decompression_memory_size

0x0000 0000 0000 01

Oxf800 106 0011 2200 0223 Fails (message too short)
0x0000 0000 0000 01

0xf800 e006 0011 2200 0223 Fails (invalid destination address)
0x0000 0000 0000 01

Oxf800 ee06 0011 2200 0223 Outputs the decompression_memory_size
0x0000 0000 0000 01

Surtees & West Informational [Page 33]

RFC 4465 SigComp Torture Tests June 2006

The messages should be decompressed in the order given to check that
an error in one message does not interfere with the successful
decompression of subsequent messages.

The two messages that successfully decompress each use a total of 5
UDVM cycles.

3.4. Stream-based Transport
This section provides a byte stream to test the SigComp header and
delimiters over a stream-based transport such as T